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Abstract. Directed percolationin higher dimensionsserves as anexampleof how the 
distribution of overhangs gives information on the critical exponents of the system. 
Overhangs appear as jumps in the position of the front formed when a gradient in 
the control parameter is imposed along one of the spatial directions. By analyzing 
the overhang distribution in ( d  + 1)-dimensional directed percolation, we determine 
the critical exponents p and VI for d 5 2. In higher dimension% the onrhang 
distribution is insensitive to the critical region. 

Suppose we have a system that undergoes a second-order phase transition when some 
control parameter is tuned. If we impose a spatial gradient in this control parameter, 
a front may occur separating the two phases. As shown by Sapoval e2 a/ [l] the front 
may contain information about the critical point, since its mean position will be in 
the area where the control parameter takes on its critical value. 

Such gradients have been used to study diffusion fronts [l], percolation [2,3], and 
critical points in directed processes such as cellular automata [4,5]. In two dimensions, 
it was found that indeed the mean position of the front converged towards the critical 
value of the control parameter, and the width of the front showed scaling properties 
that  could be related to a diverging correlation length. However, in three-dimensional 
percolation the situation turned out to be very different [6]. The reason for this is 
that  the three-dimensional percolation actually possess two critical points rather than 
one, namely the percolation threshold for the ‘present’ sites whose connectivity is 
defined by the original lattice, and the percolation threshold for the ‘absent’ sites 
whose connectivity is defined on the matching lattice [7]. In two dimensions, these 
two critical points coincide. However, in three and more dimensions they do not. The 
position of the front therefore does not settle around the usual critical point, hut, with 
the definition we use here, converges towards the critical point of the matching lattice, 
or to a position between the two critical points. 

In [5] the concept of overhangs was introduced as an additional tool to study the 
front in connection with (1 + 1)-dimensional directed processes. It was shown that 
the distribution of these overhangs contains information on the critical behaviour of 
the order parameter, thus providing an effective way to determine the corresponding 
critical exponent p. This paper is a generalization of this work to higher-dimensional 
directed processes. 

t Present address: Nordita, Blegd-vej 17, DK-2100 K~benhavn 0, Denmark. 
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In order to work with a specific example, we discuss directed percolation in ( d +  1) 
dimensions [E]. In (2 + 1) dimensions we imagine a cubic lattice oriented so that the 
[001]-direction points along the time direction. In higher dimensions, this geometry 
is generalized to a hypercubic lattice. Nodes in the lattice are given coordinates 
(2, t )  = (z,, z 2 , .  . . , z d ,  t ) .  The linear size of the lattice is L along the spatial directions 
and T along the time direction. The nodes are occupied with probability p and empty 
with probability 1 - p .  If there is a path between two nodes ( z , , t , )  and (z2,1,)  
where 1, > t , ,  that touches only occupied sites and does not move in the reverse time 
direction, then site 2 is connected to site 1. All sites connected to some common root 
belong to the same cluster. If all sites are occupied at  t = 0, the order parameter is 
the density of sites belonging to the cluster that was initiated at t = 0. This cluster 
is called the 'infinite cluster'. In the thermodynamic limit L ,  T + 00, this density 
P,(p) will be zero for p < pc  and finite for p > p , .  For p larger than, but close to p, ,  
the order parameter vanishes as 

p,  (P) - (P - P, ) P .  (1) 

The critical behaviour is caused by the divergence of a spatial correlation length 

L - IP-PcI-yL. (2) 

Moving along a line in one of the spatial directions, we can record the distribution of 
'holes' of length h occurring between sites belonging to the infinite cluster at  p , .  This 
histogram, averaged over time, behaves as [9] 

(3) h-(2-P/UL) - 
where n,(h) is to be interpreted as the probability per site of finding a hole of size h. 
As we have found no explicit derivation of (3) in the literature, and it is crucial for the 
rest of this paper, we present one here. The infinite cluster has a fractal dimension 
given by d ,  = d+ 1 - p / u l .  Thus, measured along a one-dimensional interval of length 
L,  a mass M ,  scaling as Ld' - (d - l )  will be found. Assuming that the infinite cluster 
consists of thin 'arms', the mass M ,  will be equal to the number of of holes along the 
interval 

Furthermore, we have that 

This equation states that the sum of the size of the holes must be equal to the length 
of the line, as the thickness of the fractal object itself is assumed to he negligible. Let 
us now make the assumption that the hole distribution measured along an interval L 
is of the form 

n,(h,L) - h-'LY-' (6) 
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where x and y are two exponents to be determined. Combining (4) and (5) with (6) 
leads to 

and 

( c h i )  = L iL n,(h,L)hdh - L' h-"+' dh U L i" 
Now, assuming that  (1 - x) < 0 and (2 - x) > 0, we find 

x = 2 i  d, - d =  2 -P/v,  

and 

y = 2 + x = dr - d = -PlyL 
Thus, we find 

which is equivalent to (3). 
We note that the assumption (1 - x) < 0 is equivalent to 

1 - P / V L  > 0. (12) 

If this assumption is not fulfilled, it is not possible to find two exponents z and y that 
simultaneously fulfil (7) and (8), and we do not have a holesize distribution n,(h) of 
the form (3). The reason for this breakdown when the inequality (12) is not fulfilled, 
is that the infinite cluster in this case is so tenuous that a one-dimensional line will 
only intersect the infinite cluster with a vanisliing probability. This happens for d 2 2 
for directed percolation. 

We impose a gradient along one of the spatial directions in the directed percolation 
problem, say the xl axis. The probability of finding an occupied site then varies as a 
function of position x1 such that p = 0 for x 1  = 0 and p = 1 for xl = L. In general 
p(zl) = x J L ,  i.e. p(xl) is proportional to the gradient g = 1/L. In order to measure 
the position of the front, we record the length of the string of empty sites starting 
at the leftmost site at  x = 0 and ending a t  the first occurrence of an occupied site 
belonging to the infinite cluster. The reduced length of this string, denoted x = x l / L ,  
is a function of time and the ( d  - 1)-dimensional lattice perpendicular to the xl- 
direction. The mean position of the front is then the average over time and the 
(x2, xgr.. . , xd) coordinates. 

In ( 1  + 1) dimensions, the mean position of the front averaged in the time direction 
determines an effective percolation threshold, which converges to p, with decreasing 
9 as I11 

P&) = P, + Ag' + ' . (13) 
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where the exponent z is related t o  uI. The width of the front, w(g) behaves as [l] 
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4 s )  - !7-b (14) 
where 

(15) b =  --%- 
1 + V I  

when the width is measured in units of g = 1/L. 
We may also measure the mean position of the front in higher dimensions. Also 

in this case the mean position converges towards a well defined value p ,  in the same 
way as in (13). However, p ,  is difleerent from p e .  For example, the directed site- 
percolation threshold in (2 + 1) on the cubic lattice is [lo] p ,  = 0.43525, whereas we 
find p ,  = 0.317. This surprising result may he explained along the lines of Rosso 
et  a/ [6] for ordinary percolation in three dimensions, where the front settles around 
the percolation threshold of the matching lattice or settles between the percolation 
thresholds of the matching lattice and the original lattice. Chat6 and Maneville [ l l ]  
have measured the directed percolation threshold of the occupied sites on a bcc lattice, 
and find p ,  = 0.345, while the percolation threshold of the empty sites on this lattice 
they place at  pe = 0.315. It is this threshold at  which the mean position of the front, 
p,, settles. They have, furthermore, measured the critical exponents associated with 
these two thresholds, and have found that they are equal to within numerical precision. 

However, 
whether (15) is valid or not depends on whether the inequality (12) is fulfilled. If it 
is fulfilled, (15) applies. The reason for this may be found in the discussion following 
(12): if the inequality (12) is not fulfilled, the critical areas associated with the two 
percolation points of the occupied and empty sites are ‘transparent’, and the front 
will be found in the the non-critical area between them. If, however, the inequality 
is fulfilled, the front will settle at one of the critical points, and will reflect this in its 
scaling behaviour. 

From numerical experiments, we find b = 0.44(2) for (2 + 1) dimensions (based on 
four samples of size T = 25000, L = 10,20,. . . ,150), 6 = 0.47(2) for (3+l )  dimensions 
(based on five samples where T = 25 000 and L = 5,10,.  . . ,45),  and b = 0.48(2) in 
(4 + 1) dimensions (based on four samples where T = 10 000 and L = 4 , 6 , .  . . ,22).  
Using uL = 0.729(8) as determined by Grassberger [lo] for (2+1)-dimensional directed 
percolation, (15) gives b = 0.422(8). (4 + 1) dimensions is upper critical dimension 
for directed percolation, and vI = 1/2, 1121 giving b = 1/3 in this dimension. Using 
Janssen’s [12] 6 expansion of the critical exponents in directed percolation, we find 
vL 5/8, giving b ~ i :  0.38 in (3 + 1) dimensions. From these sources, the p exponent 
may be found: p = 0.593(11) in (2+1) dimensions [lo], p 3 0.67 in (3+1) dimensions 
and p = 1 in (4 + 1) dimensions [12]. Thus, using these data in (12), we see that 
the inequality is only fulfilled for d 5 2. This is also the only case for which (15) 
works out numerically. In (3 + 1) and (4 + 1) dimensions, the exponent b turn out to 
be close to 1/2. This value may be argued as follows: in the area between the two 
critical points, the infinite cluster has a very convoluted structure, as this is an area 
where both ‘present’ and ‘absent’ sites percolate. It is therefore reasonable to assume 
that the structure of the front is dominated by short-lived fluctuations. This may be 
modelled by a simple Langevin equation [13], 

The width of the front always obeys a power law of the form (14). 

- - p , -  azl - S“, + rI(z2,. . . , td, t )  
at (16) 
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where x1 = x1(x2 , .  . . , z d , t ) ,  and q ( x 2 , .  . , , zd, t ) (=  ~ ( t ) )  is a Gaussian noise term un- 
correlated in time and in the orthogonal spatial directions (zz,. . . , xd), and normalized 
so that ( ~ ( t ) )  = 0, and ( q ( t l ) q ( t 2 ) )  = 6( t1  - t z ) .  Equation (16) has the solution 

t 

(17) x1(x2 , .  . . , xd,t) = Pm - + e-g‘ 1 q(t’)eat’dt‘ 
9 

so that (zl(tjj = p, jg .  The width of the front behaves as 

Since we have assumed that the noise is uncorrelated in the orthogonal directions, 
averaging over these dimensions will not change the result. Thus comparing (18) with 
(14), shows that b = 1/2 when the above assumptions are valid. 

Let us now turn to  the overhang distribution. An overhang, j(x,, . . . , z d , t )  is 
defined as 

j(x,, . . . ,Xd,t) = z1(22,. . . , E d . t )  - zl(zz,. . . , x , , t  - 1). (19) 

Due to the geometry of the lattice the tips of the infinite cluster will move in steps of 
j = f l  a t  each update. The front at position (z2, .  . . ,id, t )  is defined as the tip that 
has the smallest xl coordinate. The position of this front may move in steps larger 
than f l ,  when spatial or temporal folding occur. 

We calculate the time-averaged distribution of overhangs, n(j, g ,  zz, . . . , zd) .  Av- 
eraging over the orthogonal coordinates we obtain the distribution n ( j , g ) ,  which may 
be written in ihe scaiing iorm $j 

. ( j ,g) = j-On*(jgb) (20) 

where n*(z) is a function that decays to  zero faster than a power law for large ar- 
guments t, and approaches analytically a constant for small values of t. The scaling 
fcnc t i~n  n+(r)  is to be .sed fer po!!!u!e v&es of j ,  .-(.) for negative v&es of j .  
The exponent b is the same as that of (14). This statement is based on the assumption 
that there is only one cut-off length determining the front. Furthermore, we conjecture 
that a is given by 

a = 4 - d -  B/uL (21) 

as long as the inequality (12) is fulfilled. When (12) does not hold, our results suggest 

a = l  (22) 

and 

b = iji. (2:) 

Let us first assume that the inequality (12) is fulfilled. The position of the front is then 
determined by the percolation critical point of the empty sites on the matching lattice, 
and the overhangs are sampled in a critical region. Equation (18) is then based on 
the assumption that the overhang distribution sample the hole-size distribution of (3). 
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This is plausible since an overhang is essentially a ‘hole’ as defined above. In (3) the 
hole-size distribution is given as the probability per site. The hole-size distribution 
per hole becomes 
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since the statistical weight of the different hole-sizes is not to depend on the size of 
the holes. Similarly, the overhang distribution N ( j ,  g, i2, . . . ,id) is given as 

ni(j, g, i2,. . . ,id) - j - - (3-Plv4  n*(jgb). (25) 

Moreover, averaging this expression over the orthogonal coordinates will add an extra 
(1 - d)-term to the exponent 3 - O/vl for the same reason that the exponent in (4) is 
different from that of (3): when averaging over the perpendicular coordinates, large 
overhangs will be given more weight than small ones, since these overhangs stretch out 
more in the orthogonal directions. These arguments lead to (21) for the exponent a. 

On the other hand, when the inequality (12) is not fulfilled, the front is situated in 
the non-critical area between the at two critical points. We may then use the Laugevin 
approach, ( 1 6 ) ,  to determine the exponents a and b.  The result b = 1/2 follows from 
the assumption that there is only one length scale in the front, and this length scale is 
proportional to the width of the front. It was demonstrated in (18) that the width of 
the front scales as g-’l2. Even though the overhangs do not have a direct counterpart 
in the continuous-time description of the Langevin approach, we may approximate 
them by jumps in the position of the front a t  times t - E and t .  The second moment 
of these jumps behaves as 

([21(22! . . . ?  - i1(i21 ” ’ 3 zd3t  - 2 ) - - ; ( 1 -e-”) ,  (26) 

Again using the assumption that the jumps are uncomlated in the orthogonal dimen- 
sions (i2,, . . ,id), averaging over these coordinates does not change the result of (26). 
Comparing this with the second moment of the overhang distribution 

4.m 

-m 

gives (22). I t  should be noted that the above discussion-even though it  is cast in 
the language of an approximative Langevin equation-is based on the assumption 
that when the front is in the area between the two critical regions, it behaves in such 
an erratic way that no spatial nor temporal long range correlations will be present. 
When the front is in the critical region, the opposite assumption applies, namely that 
the overhangs causing the fluctuations of the front are coherent structures which are 
spatially and temporarily extended. 

We now turn to the numerical study of the overhang distribution. In [5], the scaling 
of (15), (20) and (21) was demonstrated numerically for (1 + 1)-dimensional directed 
percolation. From an analysis of the moments of the overhang distribution the two 
exponents were determined to be a = 2.75(2) and b = 0.53(1). These values agree 
very well with other estimates of the critical exponents. Using (141 vl = 1.0972(4) 
and [8] 0 = 0.280(4) in (7) and (14), we find a = 2.745(4), and b = 0.5232(5). 
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We have repeated this analysis in (2 + l), (3 + 1) and (4 + 1) dimensions. The kth 
moment of the distribution of posilrve overhangs is defined as 

m m 

(jyg)) = Cjk W ( j , g )  = g ' ( " - w  cjk n+(j) = Akg-Y(')  (28) 
j=O j=O 

where we haye .sed the scs!ing Fer= given by (20). Al. ia a constant and ~ ( k ]  = 
b(k + 1 - a).  Since the zeroth moment should not diverge in the limit g -+ 0, as 
this moment is nothing but the probability that the front moves in the direction of 
increasing p, we must have a 2 1. Let us note that in (1 + 1) dimensions, we have the 
additional constraint that the first moment must be non-divergent [5] ,  leading to the 
inequality a 2 2. 

Figure 1. Figure 1 shows the momenb Iog(j*) where k = 1, 2. 3 ,4 ,  5, 6 against 
l o g L  = - logg for (2 t 1)-dimensional directed percolation. The slopes of these 
curves a~ found by the leastaquares method are y(1) = 0.33(1), y(2) = 0.74(1), 
y(3) = 1,18(2), y(4) = 1.63(4), y (5 )  = 2.09(5), and y(6) = 2.55(7). The full line are 
the predictions based on (15), ( 2 0 )  and (21) using the dataof [IO]. 

0 1  I 
2 1 5 6 

k 

Figure 2. Figure 2 shows y(k) defined in text ogainal k for (2 + I)-dimensional 
directed percolation based on the data from figure 1. The full line is the form y(k) = 
L I L  1 ~ " \ " - ^ - I : - * ~ - I l . . . . , 1 F I  ,9",-"A,?,,, .-:"-" =,-..- 1l"l 
Y , " - ' - Y , Y . C " . * ' C Y " ,  ,'Y,,\-I,Y..Y,.l,"I...~Y"..UY .'."C"..V...,'Y,. 

The first six moments, L = 1,. . . ,6 of the distribution of the positive overhangs 
are shown in figure 1 for (2 + 1)-dimensional directed percolation, along with the 
predictions from (15), (20) and (21) using the data of Grassberger [lo]. In figures 2 
and 3, we plot y(k) against k for (2 + I ) ,  (3 + 1 )  and (4 + 1) dimensions. These plots 
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I 
I 2 1 I 6 

k 

Figure 3. Figure 3 shows plots corresponding to figure 2 for (3 + 1) ( 0 )  and (4 + 1)- 
dimensional (e) directed percolation. The full line has slope 1/2 as predicted by (20), 
(22) and (23). 

are based on the same runs as those referred to above in connection with the scaling 
of the width of the front. In these two figures we also show as full lines the predicted 
y(k) from the above discussion. In (2 + 1) dimensions, when using the data from [lo], 
we predict y(k) = 0.422(S)k - 0.0787(11), and in (3 + 1) and (4 + 1) dimensions, we 
predict y(k) = k/2. 

We have in this paper demonstrated that the distribution of overhangs that occur 
when a gradient is introduced in a directed process possessing a critical point may 
yield valuable information on the nature of the critical point in question-also when 
the process occurs in higher dimensions, as long as the critical point is ‘visible’ to 
the front. This last siluation is analogous to that of gradient percolation in higher 
dimensions [2,6]. If the front ‘sees’ the critical point, the exponents vI and may be 
deduced from the distribution. 
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